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Summary. We provide a new proof for the optimality of deductible insurance that
does not depend on the expected-utility hypothesis. Our model uses only first- and
second-degree stochastic dominance arguments.

One of the most famous applications of the expected-utility hypothesis in insurance
economics is due to Arrow (1971); “If an insurance company is willing to offer an
insurance policy against loss desired by the buyer at a premium which depends only
on the policy’s actuarial value, then the policy chosen by a risk-averting buyer will
take the form of 100 percent coverage above a deductible minimum.” Raviv (1979)
extended this result by considering Pareto-optimal insurance contracts. Arrow
(1974), Buhlmann and Jewell (1979), Blazenko (1985), Gollier (1987a,b) and Gollier
and Schlesinger (1994) have all added to Arrow’s basic result.?

Zilcha and Chew (1990) and Karni (1992) show that Arrow’s Theorem can be
extended beyond the confines of expected-utility analysis.? In particular, if risk-
averse preferences are defined via preference functionals consistent with first- and
second-degree stochastic dominance, then Theorem 1 in Zilcha and Chew implies
that Arrow’s result holds in any model of choice under uncertainty. Existing proofs
of Arrow’s Theorem all have relied upon optimal control theory or the calculus of
variation, and have shown that small perturbations from the optimal indemnity
function decrease expected utility. Zilcha and Chew do not show Arrow’s result
directly, but rather rely on extent results in claiming “The proof of this result
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! A review of the surrounding hteraturc on optimal insurance contracts in expected-utility models is
provided by Goller (1992).

> Karmextends Arrow’s Theorem dircetly to preference functionals satisying Frechet differentiability. as
introduced by Machina (1982) Karni’s result, however, is a consequence of Theorem 1 in Zilcha and
Chew, as Karni himself points out.

Copyright © 2001 All Rights Reserved



360 C. Gollier and H. Schlesinger

[Arrow’s Theorem] relies heavily on the maximization of expected utility...”
[Zilcha and Chew (1990, p. 130)]. Zilcha and Chew then invoke their Theorem,
which shows the equivalence between efficient sets under risk-averse expected-
utility maximization and stochastic-dominance preference, to show that Arrow’s
Theorem holds outside the expected-utility model.? In this paper, we show directly
that a deductible insurance policy second-degree stochasticly dominates any other
feasible insurance policy, without invoking the expected-utility hypothesis. Thus,
the expected-utility version of Arrow’s Theorem follows as a corollary to our proof
given here.

There are two pedagogical advantages to our new proof of Arrow’s result.
First, since no knowledge of optimal control or calculus of variations is needed,
our approach widens the accessibility of Arrow’s result to a larger group of
economists. Second, a direct stochastic-dominance analysis allows for a more
complete understanding as to the unanimous preference of deductibles by all risk
averters. As mentioned by Raviv (1979, p. 85), “A thorough understanding of
[optimal policies] not only contributes to our understanding of insurance policies,
but provides a foundation for the analysis of optimal contracts in more general
situations.”

Arrow’s theorem

Let (€, #, ) be a probability space and let X:2-9R, be a positive essentially-
bounded function with essential supremum W > 0. We consider an individual with
initial wealth W, which is subject to a random loss X. To protect against loss, the
consumer may purchase an insurance contract by paying a premium P. The insurer
is then bound to pay an indemnity I(x) when loss x occurs, where I(x) is some
predetermined function.* The insurer is assumed to be risk-neutral. We examine the
optimal form of I(x) when P is fixed and when transaction costs only depend upon
the actuarial value of the policy.

The individual’s wealth following the purchase of insurance is given by the
random variable Z,

Z=W—-P—X+I(X) (1)

Let G, denote the distribution function (c.d.f) for Z and let individual preferences
over final wealth distributions be given by the functional V(-). The individual is
assumed to be risk averse, which is defined here as V(H) > V(G) if H dominates G in

3 Ziicha and Chew essentially show that stochastic dominance 1s equivalent to a unammous ranking by
all real-valued functions h(z) of the form h(z) = min(z,8) for some 0eR, which in turn is a basis for
risk-averse utility functions. Thus, undominated wealth distributions from a given choice set of
distribution functions are equivalent under the criteria of stochastic dominance and expected-utility risk
aversion. One example of their result is the cxtension of Arrow’s Theorem. which they provide for a finite
probability space.

4 We assume that the insurer mects its commtment. For an analysis of the effects of contract default, sec
Doherty and Schlesinger (1990).
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the sense of second-degree stochastic dominance.® The objective here is to find the
indemnity schedule I(x) most preferred by the individual, subject to maintaining
a fixed non-negative expected profit level for the insurer:

P—fEL(X)])=k=0, (2)

where E above denotes the expectation operator. E[/(X)] denotes the actuarial
value of the policy with indemnity schedule I(x). The function f(EI) is the total
expected cost for the insurer of the policy, including any transaction costs. We have

f(ED=EL f/(ED=>1. (3)

We also restrict ourselves to non-negative indemnity payments that do not exceed
the value of the loss, i.c.,°

0<I(x)<x. (4)

The problem now reduces to determining which function I(x), chosen from all
functions satisfying (2) and (4), is most preferred by the consumer. Let € denote the
set of distribution functions for Z as given in (1), for all possible indemnity functions
satisfying the inequality (4), i.e., C = {G,|0 < I(x) < x}. The objective is thus to

maximize V(G,) subject to (2) (5)
GeC

Define the random variable Y such that Y: = W — P — X Note that Y is obtained
by taking the individual’s original random wealth prospect and subtracting out the
premium P. Thus, Y can be considered as the intermediate wealth position following
the realization of a loss but prior to the payment of the insurance indemnity, I(x).

Final wealth is given by adding in the insurance indemnity, Z =Y + I(X).
Constraint (2) together with specification (3) implies that E(Z) < E(Y) + P — k. The
nonnegativity of I(x) in constraint (4) implies that Z must be obtained from Y via
a sequence of “rightward shifts” in the probability mass for final wealth; i.e. the
distribution of Z must dominate Y in the sense of first-degree stochastic dominance
(FSD). If this were not the case, then I(x) would be negative for some values of x in
contradiction to (4). Any increase in I which is compatible with the above con-
straints is desirable to consumers. It follows in a straightforward manner that the
expected-profit constraint (2) is satisfied via an inequality if and only if
P — f(E[X]) > k, that is, when constraint I(x) < x is binding everywhere. Otherwise,
there exist strategies — compatible with (2) and (4) — consisting of increasing cover-

* Second-degree stochastic dominance of H over G 15 defined as

t

{ [G(z)— H(2)}dz =0 V1.
Note that second-degree in dominance is equivalent to a preference for fist-degree stochastic dominance
[G(1) = H(z)Vt] and a preference against mean-preserving spreads [see Rothschild and Stights (1970)]. I
risk aversion is defined in the weaker sense of preference for receiving the mean of any wealth distribution
with certainty, then deductible policies need no longer be optimal, as demonstrated by Safra and Zilcha
(1988).
¢ Sce Golher (1987a) for a discussion of optimal contracts when (4) does not hold
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age for some levels of loss which would dominate the original indemnity schedule in
the sense of the first-degree stochastic dominance. This case illustrates a premium
that is so large that, even if full coverage (I(x) = x) is provided, the expected profit
exceeds k. The optimal I(x) function is trivially I(x) = x in this case.

For the more interesting case where the above inequality does not hold, the
optimal I(x) function can be determined via second-degree stochastic dominance
(SSD). To this end, let H(+) denote the distribution function for Y. Define z such that

W -P
zH(z)+ | ydH(y)= E(Z), (6)
and define
0, if z<z;
Glz)= {H(z), if 2>z @

Note that z is unique and that G(z) is a well-defined distribution function for Z. In
particular, note that Z as defined via G(z) represents final wealth with a deductible
insurance policy, where the deductible level is given by d = W — P — z. We are now
ready to state the following result of Arrow, which shows that the optimal insurance
contract entails a straight deductible.

Theorem (Arrow): Given (1)—(4), 3d > 0 such that the optimal indemnity function
I*(x), is given by

I*(X) = max (0, x —d). (8)

Proof: Fix Pand E[I(X)], and let the c.d.f. of Z be given by G as defined 1n (7). Since
I(x)>0 for all x, and I(x) =0 for all x such that z=W — P —x <z, for all G,eC,
G(z) < G(z) for all z > z. To preserve the policy’s actuarial value it must be the case
that G,(z) > G(z) for some z < z. Thus, any other cdf is a mean-preserving spread of
G and consequently less preferred. (See Rothschild and Stiglitz (1970)).

Q.E.D.

This result is illustrated in Figure 1 for the case where H(z) is continuous with

associated density function A(z). Then G(z) is continous with density g(z) identical to
h(z) for z > Z, but G has a mass point at z. Any other G, can only move probability

z wealth

Figure 1.
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mass to the right above Z. Therefore mass from Z must shift left to preserve E[1(x)],
creating a mean-preserving spread.

If we allow P to be a decision variable in the above model, the consumer will
select a level of coverage in which the cost of insurance balances the desirability of
more coverage. The deductible result continues to hold once P is selected, since the
deductible policy will dominate all other forms of coverage, according to the
Theorem. The choice of P cannot be solved by a second-degree stochastic domi-
nance argument and depends upon other attributes of consumer preferences, not
only on the fact that consumers are risk-averse. If f(E(X))> 1, then Mossin (1968)
has shown that less than full coverage will be chosen by an expected-utility
maximizer, i.e. d* > 0. If there are no transaction costs ( f(EI) = EI), it is well-known
that full insurance (d* = 0) is optimal. Mossin’s results also apply in nonexpected
utility models, if risk aversion is of order 2, as defined by Segal and Spivak (1990).
However, the results of Segal and Spivak imply that d* = 0 also can be optimal when
f’ > 1, if risk aversion is of order 1.
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