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ABSTRACT: 

Risk aversion long has played a key role in examining decision making under uncertainty.  But 
we now know that prudence, temperance and other higher-order risk attitudes also play vital 
roles in examining such decisions.  In this paper, we examine the theory of these higher-order 
risk attitudes and show how they entail a preference for combining “good” outcomes with “bad” 
outcomes.  We also show their relevance for non-hedging types of risk-management strategies, 
such as precautionary saving.  Although higher-order attitudes are not identical to preferences 
over moments of a statistical distribution, we show how they are consistent with such 
preferences.  We also discuss how higher-order risk attitudes might be applied in insurance 
models. 
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1.  INTRODUCTION 

Ever since Daniel Bernoulli (1738), risk aversion has played a key role in examining 
decision making under uncertainty.  Within an expected-utility framework, this property 
corresponds to the simple feature that the utility function is concave.  Although somewhat newer, 
the higher-order risk attitude of "prudence" and its relationship to precautionary savings also has 
become a common and accepted assumption.  The term "prudence" was coined by Kimball 
(1990), although its importance in determining a precautionary savings demand was noted much 
earlier by Leland (1968) and Sandmo (1970).  Indeed, Kimball’s (1990) analysis is compelling, 
in part, due to the way he extends the “logic” of risk aversion to a higher order.  Since then, 
numerous empirical papers have used prudence to test for a precautionary demand for saving. 

Risk aversion is defined in several different ways.  Some, assuming an expected-utility 
framework, might say that the von Neumann-Morgenstern utility function u is concave.  Others 
might define risk aversion in a more general setting, equating it to an aversion to mean-
preserving spreads, as defined by Rothschild and Stiglitz (1970).  Such a definition allows the 
concept of risk aversion to be applied in a broader array of settings, not confined within expected 
utility.  It also helps to obtain a deeper understanding of the concept, even within expected 
utility. 

Ask someone to define what it means for the individual to be "prudent" and they might 
say that marginal utility is convex (u′′′ > 0) as defined in Kimball (1990); but they also might 
define prudence via behavioral characteristics. For example, Gollier (2001 p. 236), defines an 
agent as prudent "if adding an uninsurable zero-mean risk to his future wealth raises his optimal 
saving."  Interestingly, prudence was defined by Kimball in order to address the issue of 
precautionary saving.  But such characterizations necessarily introduce aspects of particular 
decision problems into definitions of risk attitudes.  They also are typically derived within a 
specific type of valuation model, most commonly expected utility.  In this paper, we describe an 
alternative approach to defining higher-order risk attitudes, such as prudence.  Since our 
definitions are perfectly congruous to those based within expected utility, it helps to give a 
deeper understanding of their application to risk-management decisions.   
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In an expected-utility framework, it is interesting to note that an assumption of a third 
derivative of utility being positive was often seen as “more severe” than assuming the generally 
accepted property of decreasing absolute risk aversion (DARA) – even though the latter 
assumption is stricter mathematically.  Indeed, the early papers of Leland (1968) and Sandmo 
(1970) both point out how u′′′ > 0 will lead to a precautionary demand for saving.  But 
assumptions about derivatives seemed rather ad hoc and technical at that time.  Both of these 
authors pointed out that DARA, whose intuition had already been discussed in the literature, is 
sufficient to obtain a precautionary demand for saving. 

Although it predates Kimball (1990), the concept of “downside risk aversion” as defined 
by Menezes et al. (1980), which we now know is equivalent to prudence, helps in our 
understanding.  A pure increase in “downside risk” does not change the mean or the variance of a 
risky wealth prospect, but it does decrease the skewness.  More generally, prudence plays an 
important role in the tradeoff between risk and skewness for economic decisions made under 
uncertainty, as shown by Chiu (2005).  Hence, prudence (downside risk aversion) can be quite 
important for empirical economists, wanting to measure such tradeoffs. 

A lesser known higher-order risk attitude affecting behavior towards risk is temperance, a 
term also coined by Kimball (1992).  Gollier and Pratt (1996) and Eeckhoudt et al. (1996) show 
how temperance plays an important role in decision making in the presence of an exogenous 
background risk.  As was the case with prudence, first notions of temperance relied upon its 
application to certain decision problems and they were also explained in terms of utility; more 
particularly as a negative fourth derivative of the utility function. 

Although not a perfect analog, in the same way that risk aversion is not a perfect analog 
for aversion to a higher variance (Rothschild and Stiglitz 1970), a temperate individual generally 
dislikes kurtosis.1

More recently, prudence and temperance, as well as even higher-order risk attitudes, have 
been defined without using an expected-utility context.  In particular, Eeckhoudt and Schlesinger 

  In an expected-utility setting, Eeckhoudt and Schlesinger (2008) show that 
temperance is both necessary and sufficient for an increase in the downside risk of future labor 
income to always increase the level of precautionary saving.   

                                                 
1  This is not unlike the role of the variance in discussing risk aversion.  For two distributions with the same mean, 
one might have a slightly higher variance, but have more preferable higher moments (e.g. more positive skewness) 
to some risk-averse individual.  Thus risk aversion is not exactly a preference for a smaller variance.  For two 
distributions with the same first three moments, it can be shown that it is impossible for every temperate individual 
to prefer the distribution with a higher kurtosis. 
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(2006) define these higher-order risk attitudes as preferences over particular classes of lottery 
pairs.  What makes these characterizations particularly appealing is their simplicity, as they are 
stated in terms of comparing simple 50-50 lottery pairs.  The intuition behind such preference is 
described via a concept defined as “risk apportionment.”   

In this paper, we summarize many of the interesting results about these higher-order risk 
attitudes.  The lottery preferences that are defined here are basic and they do not require any 
particular model: neither expected utility nor a particular framework for non-expected utility.  
Since much of insurance theory is based on expected-utility models, and since much of what we 
know about higher-order risk attitudes is easy to characterize in an expected-utility setting, this 
paper is mainly (though not exclusively) focused on expected utility.  Since this area of research 
is relatively new, it is our hope that this paper will stimulate new research -- both theoretical and 
empirical/experimental -- in this relatively nascent topic.  We are especially interested in ways 
that our basic results extend to non-expected utility models and to behavioral models. 

 We first give a very brief overview of the Eeckhoudt and Schlesinger (2006) lottery-
preference approach, and we explain the rationale behind what we refer to as “risk 
apportionment.”  Then, in section 3, we show how these results have quite simple ties to 
expected-utility theory.  In section 4, we generalize the concept of risk apportionment, which can 
be described as preference for “disaggregating the harms,” to a preference for mixing “good 
outcomes” with “bad outcomes.”  In section 5, we examine how our results can be applied to the 
best known of higher-order risk effects; namely, to precautionary motives.  Section 6 extends the 
analysis to cases where preferences are bivariate, such as preferences over both wealth and 
health status.  Section 7 looks at the special case of univariate preferences, but where various 
risks are jointly applied in a multiplicative manner, such as when stochastic nominal wealth is 
multiplied by a factor representing a purchasing-power index.  Finally, we conclude by 
summarizing the key points and mentioning a few areas in which more research is needed.  

 

2.  HIGHER-ORDER ATTITUDES AS RISK APPORTIONMENT 

We start by re-introducing the well-known concept of risk aversion, which is a second-
order risk attitude.  An individual has an initial wealth W > 0.  The individual is assumed to 
prefer more wealth to less wealth.  Let k1 > 0 and k2 > 0 be positive constants.  Consider the 
following two lotteries expressed via probability trees, as shown in Figure 1.  We assume that all 
branches have a probability of occurrence of one-half and that all variables are defined so as to 
maintain a strictly positive total wealth.  This latter assumption avoids complications to the 
model associated with bankruptcy. 
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      Figure 1:  Lottery preference as risk aversion 

 

In lottery B2, the individual always receives one of the two “harms,” either a sure loss of 
k1 or a sure loss of k2.  The only uncertainty in lottery B2 is which of the two losses will occur.  In 
lottery A2 the individual has a 50-50 chance of either receiving both harms together (losing both 
k1 and k2) or of receiving neither one.  An individual is defined as being risk averse if she prefers 
lottery B2 to lottery A2 for every arbitrary k1, k2 and W satisfying the above constraints.  Put 
differently suppose that the consumer already has the lottery paying W in state 1 and paying W-k1 
in state 2, where each state has a probability of 0.5.  If forced to add a second loss k2 in one of the 
two states, a risk averter always prefers to add the second loss in state 1, the state where k1 does 
not occur.   

The risk averter prefers to “apportion” the sure losses k1 and k2 by placing one of them in 
each state.  Eeckhoudt and Schlesinger (2006), who define the concept of risk apportionment, 
describe this type of behavior as a preference for “disaggregating the harms.”  It is trivial for the 
reader to verify that the above definition of risk aversion can only be satisfied with a concave 
utility function, if preferences are given by expected utility.  It is also easy to verify that lottery 
A2 is riskier than lottery B2 in the sense of Rothschild and Stiglitz (1970).2

To view the third-order risk attitude of prudence, let k > 0 denote a positive constant and 
let 

   

ε  denote a zero-mean random variable.  Someone who is risk averse will dislike the random 
wealth variable ε .  We assume that 0W k ε− + >  for all realizations of the random variable ε .  
Although we do not need risk aversion to define prudence, it makes the interpretation a bit 
simpler, since in this case we now have a new pair of “harms;” namely losing k and adding ε .  A 
                                                 
2  The lottery A2 is easily seen to be a simple mean-preserving spread of the lottery B2. 

1 2W k k− −

W  

2A  

2W k−  

1W k−  

2B
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prudent individual is one who always prefers to disaggregate these two harms.  This is illustrated 
in Figure 2.  

In lottery B3, the individual always receives one of the two “harms,” either a sure loss of 
k or the addition of a zero-mean random wealth change ε .   In lottery A3 the individual has a 50-
50 chance of either receiving both harms together or of receiving neither one.  Eeckhoudt and 
Schlesinger (2006) define an individual as being prudent if she always prefers lottery B3 to 
lottery A3.  Alternatively, one could describe the behavior as preferring to attach the zero-mean 
lottery ε  to the state with the higher wealth vis-à-vis the state with the lower wealth.3

ε

  
Equivalently, we could describe it as preferring to attach the sure loss k to the state with no risk, 
as opposed to the state with the risk .  Although this definition is not specific to expected 
utility, if we assume a model with differentiable utility, prudence is equivalent to a positive third 
derivative of the utility function, as we show in the next section.  

 

 

 

 

      Figure 2:  Lottery preference as prudence 

 Once again, our definition is expressed in terms of risk apportionment: a prudent 
individual prefers to apportion the two harms by placing one in each state.  To define 
temperance, which is a fourth-order effect, Eeckhoudt and Schlesinger (2006) simply replace the 
“harm” of losing the fixed amount of wealth k with the “harm” of a second zero-mean risk.  To 
this end let 1ε  and 2ε  be two distinct zero-mean risks, where we assume that 1ε  and 2ε are 

statistically independent of one another.  An individual is defined as being temperate, if she 
always prefers to apportion the two harms ( 1ε  and 2ε ) by placing one in each state.   

In Figure 3, again with equally likely states of nature, the temperate decision maker 
always prefers lottery B4 to lottery A4.  Again, this is a preference for “disaggregating the 

                                                 
3  A similar observation was made by Eeckhoudt et al. (1995) and by Hanson and Menezes (1971), who all confined 
their analysis to EU. 

W k ε− + 

W

3A

W ε+   

W k−

3B  
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harms.”  Given a risk in one of these two states, the individual prefers to locate a second 
independent risk in the other state.4

 

 

 

 

         Figure 3:  Lottery preference as temperance 

Note that all of the definitions as given above are not dependent on expected utility or 
any other specific model of preferences.  It a certain sense, these definitions are “model free” and 
can be examined within both expected-utility and non-expected-utility types of models.   

By nesting the above two types of lotteries in an inductive way, Eeckhoudt and 
Schlesinger (2006) generalize the concepts of prudence and temperance to even higher orders.  
In our view, this nesting makes everything a bit less transparent, but the idea of risk 
apportionment remains the same.  Although our focus in this paper will be on risk attitudes no 
greater than order four (temperance), we introduce a way to view even higher-order risk attitudes 
later in the paper, when we discuss a generalization that involves combining “good” with “bad” 
outcomes. 

 

3.  RISK ATTITUDES AND EXPECTED UTILITY 

Suppose that preferences can be expressed using expected utility.  Let the individual’s 
utility of wealth be given by the strictly increasing function u.  We assume that u is continuous 
and is continuously differentiable.5

'' 0u <

  Of course, risk aversion is equivalent to having u be a 
concave function, as is well known.  Under our differentiability assumption, this implies that 

.6

                                                 
4  The rationale for statistical independence here should be apparent.  For example if 

 

1ε  and 2ε  were identically 
distributed and perfectly negatively correlated, every risk averter would prefer to have the two risks in the same 
state, since they would then “cancel” each other. 
5  Although utility-based models can also be derived without differentiability, most of the literature assumes that 
these derivatives exist.   
6  For the mathematically astute, we admit that this is a slight exaggeration.  Strict risk aversion also allows for 

'' 0u =  at some wealth levels, as long as these wealth levels are isolated from each other.  See Pratt (1964) for more 
details.   

1 2W ε ε+ + 

W

4A  

2W ε+   

1W ε+   

4B
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Within an expected-utility framework, prudence is equivalent to ''' 0u > , exactly as in 
Kimball (1990); and temperance is equivalent to '''' 0u < , as in Kimball (1992).  The "tool" in 
deriving these results is the utility premium, measuring the degree of "pain" involved in adding 
risk.  To the best of our knowledge, the first direct look at the utility premium was the work of 
Friedman and Savage (1948).  Although this measure actually predates more formal analyses of 
behavior under risk, as pioneered by Arrow (1965) and Pratt (1964), it has been largely ignored 
in the literature.7

We define the utility premium for the risk 

  One reason for ignoring the utility premium is that it cannot be used to 
compare individuals.  However, our interest here is examining choices made by a single 
individual.  As such, the utility premium turns out to be an extremely useful tool. 

1ε , given initial wealth W as follows: 

1( ) ( ) ( )W Eu W u Wν ε≡ + − .        (1) 

The utility premium is the amount of utility added by including the risk 1ε  with initial wealth.  
Of course, for a risk averter, the individual loses utility by adding the zero-mean risk 1ε ; hence 

( ) 0Wν < .  This follows easily from Jensen’s inequality since u is concave.8

1ε

  To the extent that 

utility is used to measure an individual’s welfare, the utility premium measure the level of “pain” 
associated with adding risk  to wealth, where “pain” is measured as the loss of utility. 

 An example of the utility premium is illustrated in Figure 4 for the case where 1ε  is a 50-

50 chance of either gaining or losing wealth e.  In Figure 4, Eu denotes the expected utility of 
wealth prospect 1W ε+  .  Pratt’s (1964) risk premium, denoted here by π, is the amount of wealth 
that individual is willing to give up to completely eliminate the risk 1ε .  The utility premium 

(which is the negative of the amount drawn in Figure 4) shows exactly how much utility is lost 
by the addition of 1ε .  Since the utility function representing an individual’s preferences is not 

unique, the utility premium will change if the utility scale changes.9

 

  For example, if we double 
all of the utility numbers, the utility premium will also double.  Pratt’s risk premium, on the other 
hand, is invariant to such changes.  For this reason, we can use Pratt (1964) to compare 
preferences between individuals, but we cannot use the utility premium. 

 

                                                 
7  A paper by Hanson and Menezes (1971) made this same observation more than 40 years ago! 
8  In the original paper by Friedman and Savage (1948), the risks that were considered had positive expected payoffs 
and could thus have a positive utility premium, even for a risk averter.  In this paper, we only consider zero-mean 
risks. 
9  The utility function is only unique up to a so-called “affine transformation.”  See Pratt (1964). 
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     Figure 4:  Utility Premium and Risk Premium 

 
We can use the utility premium to easily show how our earlier definitions of prudence 

and temperance relate to expected utility.  To this end, differentiate the utility premium with 
respect to initial wealth to obtain  

1'( ) '( ) '( )W Eu W u Wν ε≡ + − .        (2) 

Using only Jensen’s inequality, it follows from (2) that '( ) 0Wν >  whenever 'u  is a convex 
function, i.e. when '''( ) 0u y y> ∀ .  Since the utility premium is negative, we interpret '( ) 0Wν >  

as meaning that the size of the utility premium gets smaller as initial wealth W increases.   

Now consider our earlier definition of prudence.  A prudent individual would prefer to 
attach the zero-mean risk 1ε  to the state with the higher wealth W, as opposed to attaching it to 
the state with the lower wealth, W-k.  This is due to the fact that 1ε  causes less “pain” at the 

higher wealth level, where pain in our expected-utility model is measured via utility.  In other 
words, prudence is equivalent to saying the size of our utility premium decreases with wealth, 
i.e. ''' 0u > .   

More formally, a decreasing utility premium, '( ) 0Wν >  is equivalent to saying that, for 

all k > 0, 

1 1( ) ( ) ( ) ( )Eu W u W Eu W k u W kε ε+ − > − + − −  .     (3) 

W-π 

Utility 

Wealth 
W-e W+e W  

Risk 
premium 

 Utility 
premium 

Eu 

u(W) 
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Rearranging (3) and multiplying by ½ yields  

1 1
1 12 2[ ( ) ( )] [ ( ) ( )]Eu W u W k u W Eu W kε ε+ + − > + − +  ,    (4) 

which is the expected-utility representation of the lottery preference depicted in Figure 2. 

To show that temperance is equivalent to assuming that '''' 0u < , we need to first 
differentiate the utility premium a second time with respect to wealth to obtain  

1''( ) ''( ) ''( )W Eu W u Wν ε≡ + − .       (5) 

It follows from (5), using Jensen’s inequality, that ''( ) 0Wν <  whenever ''u  is a concave 

function, i.e. whenever the fourth derivative of utility is negative, '''' 0u < .  If we also have a 
decreasing utility premium (prudence), this can be interpreted as saying that the rate of decrease 
in the utility premium lessens as wealth increases. 

 We will still let ( )Wν  denote the utility premium for adding the risk 1ε  to wealth W.  To 

understand how this relates to temperance, we need to consider adding a second independent 
zero-mean risk 2ε .  Consider the change in the utility premium from this addition of 2ε .  We are 
particularly interested in the case where the presence of risk 2ε  exacerbates the loss of utility 
from risk 1ε .10

2( ) ( ) 0E W Wν ε ν+ − <

  Since the utility premium is negative this condition is equivalent to 

,        (6) 

which itself holds for all W and for all zero-mean 2ε  if and only if ν  is a concave function.  

From (5), we see that the inequality in (6) holds whenever '''' 0.u <   We can now use the 
definition of the utility premium in (2) to expand the left-hand side of the inequality (6).  
Rearranging the result and multiplying by ½ shows that the inequality in (6) is equivalent to  

1 1
1 2 1 22 2[ ( ) ( )] [ ( ) ( )]Eu W u W u W Eu Wε ε ε ε+ + + > + + +    .    (7) 

Of course, the inequality in (7) is simply the expected-utility representation of the lottery 
preference depicted in Figure 3.   

 

                                                 
10  Kimball (1993) refers to the two risks in this case as “mutually aggravating.”  Pratt and Zeckhauser (1987) came 
very close to making this same observation.  Their basic difference was considering independent risks εi that were 
disliked by a particular individual, rather than zero-mean risks, which are disliked by every risk averter.  Menezes 
and Wang (2005) offer an example that is also quite similar and refer to this case as “aversion to outer risk.” 
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4.  PAIRING GOOD OUTCOMES WITH BAD ONES 

 Another approach to viewing higher-order risk attitudes extends the concept of 
“mitigating the harms,” as was discussed in section 2.  To implement this approach, we first need 
to provide a definition of an Nth-degree increase in risk, as introduced by Ekern (1980).  Assume 
that all random variables only take on values strictly between a and b.  Consider a random wealth 
variable with cumulative distribution function F(x).  Define (1) ( ) ( )F x F x≡  and then define 

( ) ( 1)( ) ( )
xi i

a
F x F t dt−≡ ∫  for all 2i ≥ .   

Definition:  The distribution G is an Nth-degree increase in risk over F if ( ) ( )( ) ( )N NF x G x≤  for 
all a x b≤ ≤ , and ( ) ( )( ) ( )i iF b G b=  for 2,..., 1i N= − .11

As an example that might be more familiar to some readers, when N = 2, a second-degree 
increase in risk is identical to a “mean-preserving increase in risk” as defined by Rothschild and 
Stiglitz (1970).  As another example, for N = 3, a third-degree increase in risk is identical to an 
“increase in downside risk” as defined by Menezes et al. (1980).   

 

 From the definition above, it follows that the first N-1 moments of F and G are identical.  
For N = 2, if G is a second-degree increase in risk over F, G must have a higher variance than F.  
However, the reverse implication does not hold: for two distributions with the same mean, a 
higher variance for G does not necessarily imply that G is a second-degree increase in risk over 
F.   

 Before proceeding further we require the following result, which is due to Ekern (1980). 

Theorem (Ekern):  The following two statements are equivalent: 
          (i)  G is an increase in Nth-degree risk over F. 
         (ii) ( ) ( )

b b

a a
u t dF u t dG≥∫ ∫  for all functions u such that ( ) 1sgn[ ( )] ( 1)N Nu t += − . 12

 

 

 As a matter of notation, if the random variables X  and Y  have distribution functions F 
and G respectively, where G is an increase in Nth-degree risk over F, we will write NX Y 

 .  

                                                 
11  Replacing the second condition in the definition with ( ) ( )( ) ( )i iF b G b≤  yields a definition of Nth-order stochastic 
dominance.  The results in this section easily extend to stochastic dominance, as shown by Eeckhoudt, Schlesinger 
and Tsetlin (2009). 
12  We use the notation ( ) ( ) ( ) /N N Nu t d u t dt≡  to denote the Nth derivative of u. 
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Now consider four random variables, each of which might possibly be a degenerate random 
variable (i.e. a constant): 1 1 2 2, , ,X Y X Y    .  We assume that 1 1NX Y 

  and 2 2MX Y 

  for some N and 
M.  From Ekern’s Theorem, we see that 1X  is preferred to 1Y  for any individual with 

( ) 1sgn[ ( )] ( 1)N Nu t += − .  In a certain sense, we can thus think of 1X  as being “good” relative to 1Y , 
which is relatively “bad.”  In a similar manner, 2X  is preferred to 2Y  for any individual with 

( ) 1sgn[ ( )] ( 1)M Mu t += − , so that 2X  is “good” relative to 2Y  for this person. 

 Now consider a choice between two lotteries.  The first lottery, lottery B, is a 50-50 
chance of receiving either 1 2X Y+   or 1 2Y X+  .  The second lottery, lottery A, is a 50-50 chance of 
receiving either 1 2X X+   or receiving 1 2Y Y+  .  In other words, lottery B always yields one “good” 

outcome added to one “bad” outcome.  Lottery A, on the other hand, yields either the sum of 
both “good” outcomes or the sum of both “bad” outcomes.  The following result, which is due to 
Eeckhoudt, Schlesinger and Tsetlin (2009) formalizes a certain type of preference for combining 
“good” with “bad.” 13

 

 

Proposition 1:  Given 1 1 2 2, , ,X Y X Y     with the lotteries A and B as described above, lottery A has 
more (N+M)th degree risk than lottery B.  In other words, N MB A+ . 

 

 From Ekern’s Theorem, Proposition 1 implies that anyone with utility satisfying 
( ) 1sgn[ ( )] ( 1)N M N Mu t+ + += −  will prefer lottery B to lottery A.  To see how this proposition 

generalizes the results of section 3, consider the following examples.  In each of the examples 
below, we assume that 1ε  and 2ε  are statistically independent zero-mean risks.  

 

Example 1.  (Risk aversion)  Let 1 1 1 2 2 2, , 0,X W Y W k X Y k= = − = = −    .  Lotteries A and B are 

thus identical to the lotteries A2 and B2 in Figure 1.  It is easy to see from the definition that 
1 1 1X Y 

  and 2 1 2X Y 

 .  Thus,N=M=1 in applying Proposition 1.  Hence, everyone who is risk 

averse, with (2) ( ) 0u t t< ∀ , will prefer lottery B to lottery A.   

 

                                                 
13  These authors also provide a proof of this result, which we do not reproduce here. 
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Example 2.  (Prudence)  Let 1 1 2 2, , 0,X W Y W k X Y ε= = − = =   

 .  Lotteries A and B are then 
identical to the lotteries A3 and B3 in Figure 2.  It follows from the definition that 1 1 1X Y 

  and 

2 2 2X Y 

 .  Thus, N=1 and M=2 in applying Proposition 1.  Hence, everyone who is prudent, with 
(3) ( ) 0u t t> ∀ , will prefer lottery B to lottery A.   

 

Example 3.  (Temperance)  Let 1 1 1 2 2 2, , 0,X W Y W X Yε ε= = + = =   

  .  Lotteries A and B are thus 
identical to the lotteries A4 and B4 in Figure 3.  In this example, we have 1 2 1X Y 

  and 2 2 2X Y 

 .  

Thus, N=M=2 in applying Proposition 1.  Hence, everyone who is temperate, with (4) ( ) 0u t t< ∀ , 

will prefer lottery B to lottery A.   

 

 In each of these examples, the “bad” outcome is either losing a fixed amount of money or 
adding a zero-mean risk.  We can view the absence of the harm as a relatively “good” outcome 
and the inclusion of the harm as a relatively “bad” outcome.  So our former description of 
“disaggregating the harms” is now reinterpreted as a preference for “mixing good with bad 
outcomes.”  But notice how the current story allows for additional applications of “good” and 
“bad.”  Moreover, this approach often allows for alternative interpretations.  Take, for example, 
the case of temperance.  Instead of using N=M=2 in applying Proposition 1, we can also let N=1 
and M=3 as in the following example: 

 

Example 4.  (Temperance)  Let 1 1 2 1 2 2, , ,X W Y W k X Yθ θ= = − = =     .  Here we assume that 

1 2 0E Eθ θ= =   and that 1 2( ) ( )Var Varθ θ=  , but that 2 3 1θ θ 

 , i.e. that 2θ  has more 3rd-degree risk 

(more “downside risk”) than 1θ .  By the definition above, this implies that 2θ  must be more 

skewed to the left than 1θ .  Proposition 1 implies that a temperate individual would prefer to add 

2θ  in the state with higher wealth, with 1θ  added to the state with lower wealth, as opposed to 

reversing the locations of the two θ  risks.  Again we see how this interpretation can be made 
with regards to apportioning the risks.   
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5.  PRECAUTIONARY MOTIVES 

 To the best of our knowledge, the first papers dealing with this topic in an expected-
utility framework were by Leland (1968) and Sandmo (1970).  Both considered the effect of 
risky future income on current saving.  To the extent that future risk increased the level of 
current saving, this additional saving was referred to as “precautionary saving.”  The notion of 
this precautionary motive for saving was introduced by Keynes (1930) and it was embedded into 
the macroeconomics literature on the permanent income hypothesis by Bewley (1977).   

 Both Leland and Sandmo discovered that a precautionary-saving motive would be 
ensured if and only if the consumer’s differentiable utility function exhibited prudence, ''' 0u > .  
However, since the term “prudence” did not exist prior to Kimball (1990) and since the 
requirement ''' 0u >  might need some motivation at the time, both Leland and Sandmo were 
quick to point out that the well-accepted principle of decreasing absolute risk aversion (DARA) 
was sufficient to obtain their results.  Although DARA is actually a stronger property, it had an 
intuitive economic rationale, and thus was probably easier to justify. 

 However, as we now see from equation (2), the size of the utility premium for adding a 
zero-mean risk to some initial wealth level will always be decreasing in the wealth level if and 
only if 'u  is a convex function, i.e. if and only if ''' 0u >  when utility is differentiable.  Before 
examining the rationale for a precautionary motive, let us first be careful to note the distinction 
between prudence and DARA.  For example, if utility exhibits the well know property of 
constant absolute risk aversion (CARA), we will still have prudence, ''' 0u > .  Indeed, under 
CARA, the size of the utility premium, as defined in (1), is decreasing wealth.  Thus, the level of 
pain from a zero-mean risk will decrease as the individual becomes wealthier.  At first thought, 
this might seem counter to the basic property under CARA that the individual’s willingness to 
pay to completely eliminate the risk is independent of her wealth level.  However, one needs to 
also consider the fact that our individual is risk averse, which implies that the marginal utility of 
money is decreasing in wealth.  Under CARA, a zero-mean risk will cause less pain as the 
individual becomes wealthier.  However, as the individual becomes wealthier, her willingness to 
pay to remove each unit of pain will increase (since money is worth less at the margin).  Under 
CARA, these two effects exactly offset and the individual pays the same total amount to remove 
the risk at every wealth level.  See, for example, Eeckhoudt and Schlesinger (2009). 

 As another example, consider the often used quadratic form of the utility function 
2( )u w w bw= − , where 0b >  and we restrict 1(2 )w b −< .  Since '''( ) 0u w =  for all w, it follows 
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from (2) that the level of pain from adding a zero-mean risk will be constant at all levels of initial 
wealth.  However, since we still have decreasing marginal utility, the willingness to pay to 
eliminate each unit of pain will increase as the individual becomes wealthier.  This leads to the 
undesirable property of increasing absolute risk aversion for this utility function, as is well 
known. 

 Now let us consider a different interpretation for the risk apportionment story.  Rather 
than consider the 50-50 lotteries, such as those in Figure 2, let us consider sequentially receiving 
each of the two lottery outcomes, one in each period.  Denote these two outcomes as 1x  and 2x , 

with the understanding that the outcomes might or might not both be random.  We previously 
considered the expected utility of a lottery, which was defined as 1 1

1 22 2( ) ( )Eu x Eu x+  .  But if we 
simply add the utility from the two outcomes, 1 2( ) ( )Eu x Eu x+  , we can reinterpret  the model as 

a two-period (undiscounted) lifetime utility.   

 Thus, from Figure 2, we see that a preference for B3 over A3 implies that the individual 
prefers to have more wealth in the time period with the zero-mean risk, whenever the individual 
is prudent.  Worded differently, the individual can decrease the pain from this zero mean risk by 
shifting wealth to the period with the risky income.  In the precautionary-saving model, this 
implies shifting more wealth to the second period via an increase in saving.   

 Eeckhoudt and Schlesinger (2008) extend this reasoning to cases where the risk in the 
second period changes.  Since increasing wealth in the second period via additional saving is 
itself a first-order change, we can apply the results of section 4 to consider Nth-degree changes in 
the riskiness of second period income.  If the second-period income is risky, but riskiness 
increases via a second-degree increase in risk, the individual can mitigate some of this extra pain 
by increasing saving if the individual is prudent.  The application of Proposition 1 is identical to 
that used in Example 2 of the previous section, with N=1 and M=2.. 

 However, the link between prudence and precautionary change is broken if we consider 
other types of changes in the riskiness of future income.  Suppose, for example, that future risky 
income undergoes a first-degree deterioration.  This would be the case, for instance, when there 
is an increased risk of being unemployed in period 2.  We can then apply Proposition 1 as in 
Example 1, with N=M=1.  Any risk-averse individual would increase her saving in response to 
such a change in the riskiness of future income.  Thus, prudence is no longer necessary to induce 
precautionary saving.  On the other hand, suppose that the first two moments of risky future 
income remained unchanged, but that there was a third-degree deterioration in the risk connoting 
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more downside risk.  In that case, we apply our Proposition 1 with N=1 and M=3.  Thus, 
prudence is no longer sufficient to induce precautionary saving and we need to assume 
temperance to guarantee an increase in saving. 

 Obviously, models employing joint decisions about saving and insurance will find all of 
the above analysis useful.  However, precautionary motives can also be found in decision models 
that do not include saving.  For example, consider a simple model of insurance with two loss 
states:  loss and no-loss, where a loss of size L occurs with probability p.14

0W >

  The individual’s 
initial wealth is .  Coinsurance is available that pays a fraction α of any loss for a premium 
of (1 ) pLα λ+ , where 0λ ≥  denotes the so-called “premium loading factor.”  It is 

straightforward to show that the first-order condition for the choice of an optimal level of 
coinsurance in an expected-utility framework, is 

 1 2[1 (1 ) ] '( ) [1 (1 ) ] '( ) 0dEu
d pL p u y pL p u yα λ λ λ= − + − − + + = ,    (8) 

where 1 (1 )y W pL L Lα λ α≡ − + − +  and 2 (1 )y W pLα λ≡ − + .15

 Now suppose that we introduce an additive noise term 

  Let α* denote the optimal 

level of insurance chosen. 

ε , with 0Eε = , but that this noise 
only occurs in the loss state.  Examining the derivative in the first-order condition (8), but with 
the noise term added yields 

 * 1 2| [1 (1 ) ] '( ) [1 (1 ) ] '( )dEu
d pL p Eu y pL p u yαα λ ε λ λ= − + + − − + + .   (9) 

If the individual is prudent, we know that 1 1'( ) '( )Eu y u yε+ > .  Comparing (9) with (8), it 
follows that *| 0dEu

d αα > , so that more insurance will be purchased when the noise is present.   

 Note that the extra insurance does nothing to protect against the loss L.  Rather, the extra 
insurance lowers the “pain” from the zero-mean noise that exists only in the loss state.  Although 
there is no saving in this model, the individual can increase her wealth in the loss state by 
increasing the level of insurance purchased.  This additional insurance is thus due solely to a 
precautionary motive, and it is dependent on having such a precautionary motive, which in this 
case requires prudence. 

 The reader can easily examine the case where the zero-mean loss occurs only in the no-
loss state.  In that case, if we assume prudence, a precautionary effect induces the individual to 

                                                 
14  This example is adapted from Fei and Schlesinger (2008). 
15  The second-order sufficient condition for a maximum follows trivially if we assume risk aversion. 
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increase her wealth in the no-loss state.  In our insurance model, this is achieved by reducing the 
level of insurance, and thus spending less money on the insurance premium.  

 

 

6.  MULTIVARIATE PREFERENCES  

 In this section, we examine an extension of the model that has much applicability in 
insurance models, namely the case where preferences depend on more than just wealth.  Quite 
often, preferences over wealth in the loss state are not the same as in the no-loss state.  As a 
concrete example consider one’s health.  To this end, let y denote the individual’s wealth and h 
denote the individual’s health status.  To make the model viable, we need to assume that h is 
some objective measure, such as the remaining number of years of life. 16

 Suppose that an individual with initial wealth W and initial health H faces a loss of size 

  We also assume that 
an increase in h is always beneficial and that the individual is risk-averse in h, so that the 
individual would always prefer to live another 10 years for certain as opposed to having a 50-50 
chance of living either 5 years or 15 years.   

0k >  in wealth and a loss of size 0c >  in health.  Consider the following two 50-50 lotteries as 
shown in Figure 5.  

 

 

 

 

      Figure 5:  Lottery preference as correlation aversion 

In lottery 2
HB , the individual incurs either a reduction in wealth or a reduction in health, each 

with a 50% chance.  In lottery 2
HA , the individual either has neither reduction, or has a 

simultaneous reduction in both wealth and health.  If we extend the earlier concept of mitigating 
the two “harms,” then the individual would prefer lottery 2

HB  to lottery 2
HA .  The individual 

                                                 
16  For another interesting application see Gollier (2010), who lets h denote the quality of the planet’s environment. 
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prefers to apportion the two “harms” by placing them in separate states of nature.  Likewise, we 
can interpret this lottery preference as preference for combining “good with bad.” 

 Such preference is defined as “correlation aversion” by Epstein and Tanny (1980).  To 
the best of our knowledge, this concept was first introduced to the literature by Richard (1975), 
who used a different terminology.  For preferences represented by a bivariate utility function 

( , )u y h , Richard (1975) and Eeckhoudt, Rey and Schlesinger (2007) show that this preference 
follows if and only if the cross-partial derivative 2

12 ( ) /( )u u y h≡ ∂ ∂ ∂  is everywhere negative.   

 We should note that such preference is not one that is universally assumed in the 
literature.  In fact, the empirical evidence is mixed on the direction of the lottery preference.  
Indeed, this topic has been debated in the literature, as summarized well by Rey and Rochet 
(2004).  The main thrust of the counterargument is that one cannot enjoy wealth in poor states of 
health, so that it might be better to pair lower wealth with lower health.  In other words, a case 
can be made that it might be preferable to pair bad with bad and pair good with good, counter to 
the arguments made above.  If this preference always occurs, then the cross-partial derivative  

2
12 ( ) /( )u u y h≡ ∂ ∂ ∂  is everywhere positive in an expected-utility setting. 

 The implication of such assumptions can have a big impact in models of insurance 
choice.  For instance, consider our two state insurance example from the previous section, 
without any noise.  Assume further that the financial loss of size L occurs only when the 
individual also receives a reduction in her health status from H to H-c.  This additional 
assumption requires only that we adapt the first-order condition (8) by changing 1'( )u y  to 

1 1( , )u y H c− , and by changing 2'( )u y  to 1 2( , )u y H .  Without losing generality, we can scale 
utility so that, if the individual is correlation averse, we have 1 1 1( , ) '( )u y H c u y− >  and 

1 2 2( , ) '( )u y H u y< .  It then follows in a straightforward manner from (8) that the optimal level of 

insurance would need to be increased, when the financial loss of size L is accompanied by a loss 
in health status of amount c.  Note that this additional insurance provides a bit more wealth in the 
loss state, and that wealth in the loss state now provides the additional benefit of reducing the 
“pain” due to the lower health status.   

 Although the risk attitude of correlation aversion has existed in the literature since 
Richard (1975), it has only recently begun to receive much attention.  Moreover, the concept has 
been extended by Eeckhoudt et al. (2007), Tsetlin and Winkler (2009), and others to higher 
orders of multivariate risk attitudes.   
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   Figure 6:  Lottery preference as multivariate risk apportionment 

 As we did in section 4, consider the (possibly degenerate) random wealth variables X  
and Y .  We assume that Y  has more Nth-degree risk than X .  Let r  and s  denote two 
(possibly degenerate) health-status variables, where s has more Mth-degree risk than r .  Hence, 
we can view X  and r  as each being relatively “good,” whereas Y  and s  are relatively “bad.”  
Consider the 50-50 lotteries in Figure 6. 

In lottery HB , the individual mixes good with bad.  In lottery HA  the individual mixes good 
with good, and mixes bad with bad.  A preference for HB  over HA  thus represents a type of 
multivariate risk apportionment.17

 Consider the case where N=M=1.  This case corresponds to correlation aversion.  Indeed, 
as shown by Tsetlin and Winkler (2009), in an expected-utility model, this preference can be 
guaranteed to hold if and only if 

   

12 ( , )u y h  is everywhere negative.  In Figure 6, our earlier 

definition of correlation aversion is illustrated by setting 0X r= =

 , Y k= −  and s c= − .  Once 
again, both definitions turn out to be equivalent.   

 The case where N=1 and M=2 is labeled “cross prudence in wealth” by Eeckhoudt et al. 
(2007).  For an individual displaying such preference, more wealth mitigates the “harm” of a 
riskier health, where “riskier” means more second-degree risk.  The case in which N=2 and M=1 
is labeled “cross prudence in health.”  This preference implies that a riskier (in the second 
degree) wealth is better tolerated when the individual is healthier.  If N=M=2, we obtain what 
Eeckhoudt et al. (2007) label “cross temperance.”  Their interpretation considers the special case 
where 0X r= =

 , and where Y  and s  are zero-mean risks.  Such an individual would prefer a 
50-50 lottery with either risky wealth or risky health, as compared to 50-50 lottery with 
simultaneous risky wealth and risky health versus no risk.   

                                                 
17  This analysis is based on a generalization and extension of the results in Tsetlin and Winkler (2009), who confine 
themselves to expected-utility models.   
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 In each of the above settings, the lottery HB  is necessarily preferred to lottery HA  in an 
expected-utility framework if and only if ( , )1( 1) 0

N M

N M
u y hN M

y h

+∂+ −
∂ ∂

− > .  Several example of how these 

results can be applied to decision problems can be found in Eeckhoudt et al. (2007).  As an 
insurance example, consider the two-state insurance model of section 5, where a financial loss of 
size L occurs with probability p.  Here we first assume that only wealth is random and that health 
status is constant at level H.  The first-order condition for an optimal choice of coinsurance is 
thus 

 1 1 1 2[1 (1 ) ] ( , ) [1 (1 ) ] ( , ) 0dEu
d pL p u y H pL p u y Hα λ λ λ= − + − − + + = .   (10) 

Denote the solution to (10) by the insurance level α*.   

 Now suppose that the mean health status is not affected, but that health-status becomes 
noisy in the state where there is a financial loss.  In particular, health status in this state becomes 
H s+  , where s  is a zero-mean random health variable.  Thus, 

 * 1 1 1 2| [1 (1 ) ] ( , ) [1 (1 ) ] ( , ).dEu
d pL p Eu y H s pL p u y Hαα λ λ λ= − + + − − + +   (11) 

Comparing (11) with (10), it follows that the level of insurance will increase whenever
1 1 1 1( , ) ( , )Eu y H s u y H+ > .  From Jensen’s inequality, this will hold whenever the function 

1( , )u y h  is convex in h; i.e. whenever 122 0u > , which by definition is whenever the individual is 

cross prudent in wealth.  Intuitively, the extra insurance in this case helps to mitigate the “pain” 
caused by introducing noise into the health status.   

 

 

7.  MULTPLICATIVE RISKS 

 In the first five sections of this paper, preferences were univariate over wealth alone.  
Moreover, the various components of wealth were all additive.  In section 6, we considered 
general multivariate preferences.  Let us change the multivariate notation slightly so that the 
utility function in the multivariate case is written ( , )y hU .  The additive univariate model can be 

obtained as special case by simply interpreting h as a second additive wealth term, and then 
defining utility equal to ( , ) ( )y h u y h= +U .  In this set-up, for example, it is easy to see that

112 122( , ) ( , ) '''( )y h y h u y h= = +U U .  Thus, both multivariate cases of “cross prudence” correspond 
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to the simple univariate additive case of “prudence,” with the simple requirement that ''' 0u > .  
Other higher-order risk attitudes over wealth can be similarly derived in the same manner. 

 In several applications of decision making, there are two (or more) sources of risk that are 
multiplicative.  For example, stochastic wealth might be multiplied by a stochastic price deflator; 
or stochastic portfolio returns in a foreign currency might be adjusted via multiplying by a 
stochastic exchange rate factor.  When preferences are univariate over wealth, but the 
components are multiplicative, we can model this as another special case of multivariate 
preference.   

 

 

 

   Figure 7:  Lottery preference as multiplicative risk apportionment 

 

 As we did in section 4, consider the (possibly degenerate) random wealth variables X  
and Y , where Y  has more Nth-degree risk than X .  We also consider r  and s  as two (possibly 
degenerate) additional variables that are used to rescale overall wealth, where s has more Mth-
degree risk than r .  Hence, we can view X  and r  as each being relatively “good,” whereas Y  
and s  are relatively “bad.”  Consider the 50-50 lotteries in Figure 7.  

 In lottery mB , the individual mixes good with bad.  In lottery mA  the individual mixes 
good with good, and mixes bad with bad.  A preference for mB  over mA  thus represents a type of 
multiplicative risk apportionment.  Let us consider first the case of correlation aversion.  Here we 
have N=M=1.  For example, Eeckhoudt, Etner and Schroyen (2009) consider the special case 
where 0, , 1X Y k r= = − = 

  and 1s c= < .  As illustrated in Figure 7, an individual who exhibits 

multiplicative correlation aversion prefers lottery mB to lottery mA .  From section 7, this behavior 
follows if and only if 12 ( , ) '( ) ''( ) 0y h u yh yhu yh= + <U .  Straightforward manipulation shows 

that this last inequality is equivalent to having relative risk aversion be everywhere larger than 
one, i.e. ''( ) / '( ) 1yhu yh u yh− > . 

 Eeckhoudt and Schlesinger (2008) and Eeckhoudt, Etner and Schroyen (2009) show that 
for N=1 and M=2, “cross prudence,” 112 122( , ) ( , ) '''( )y h y h u y h= = +U U , holds for all y and h if 

( )W Y s+    

( )W X r+    
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( )W Y r+    

( )W X s+    
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and only if relative prudence is greater than 2, i.e. '''( ) / ''( ) 2yhu yh u yh− > .18

0,X Y k= = − 

  In this setting, we 
can let  and let s  and r  be random variables with s  exhibiting more second-

degree risk than r .  For example, let both s  and r  have a mean of one, so that W X W− =  and 
W Y W k− = −  represent expected wealth in the two states of nature.  For instance, r  might take 
values of 0.95 or 1.05 – either adding or losing five percent of total wealth – each with a 50-50 
chance; and s  might take on equally likely values of 0.90 or 1.10 – either adding or loosing ten 
percent of total wealth.  Since r  has less second degree risk, multiplying any wealth level by r , 
as opposed to s , is preferred by every risk averter.   

 From what we learned about precautionary motives in section 5, we know that the “pain” 
from a (second-degree) riskier wealth in the state with s  can be mitigated by having more wealth 
in that state.  On the other hand, having more wealth this state means that the dollar risk will be 
higher, since s  is multiplied by a higher dollar amount.  In other words, the dollar risk could be 
reduced by having less wealth in the state with the higher risk s .  In order to have more wealth 
in the state with s  be the better of the two alternatives, the precautionary effect must be strong 
enough to dominate.  The result above makes this notion precise, by telling us that this 
precautionary effect will always dominate if and only if the measure of absolute prudence is 
everywhere larger than two.19

 

   

8.  CONCLUDING REMARKS 

 In this paper, we introduce some fundamentals about higher-order risk attitudes.  
Although much is known about risk aversion (a second-order risk attitude) and a bit is known 
about prudence (a third-order risk attitude), much less is known about higher orders.  The 
analysis by Eeckhoudt and Schlesinger (2006) marked a break in the direction of research in this 
area.  Whereas most research had focused on specific choice problems and their comparative 
statics, this new direction focused on preferences between pairs of simple lotteries.  This 
direction is a bit similar to the way in which Rothschild and Stiglitz (1970) characterized risk 
aversion as an aversion to mean-preserving spreads.   

 Within an expected-utility framework, our lottery preference typically relates to the sign 
of various derivatives of the utility function.  These lottery preferences also can be described as 

                                                 
18  For a generalization of the multiplicative case to any arbitrary order n, see Wang and Li (2010). 
19  Note that for commonly used CRRA utility functions, relative prudence always equals the measure of relative 
risk aversion plus one, so that relative risk aversion exceeding one is equivalent to relative prudence exceeding two.  
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preferences for “risk apportionment,” which tell us a general rule for how an individual likes to 
combine various components of risk.  For example, risk aversion was seen as a preference for 
“disaggregating the harms,” where the harms were two potential sure losses of wealth.  By 
redefining the “harms” is a particular way, we can obtain all of the higher-order risk attitudes.  
Equivalently, these attitudes were shown to be a preference for combining “good” with “bad,” 
with good and bad being defined via Nth-degree differences in risk à la Ekern (1980).  Not 
surprisingly, at least to us, extensions to multivariate preferences also depended upon the signs of 
the derivatives, often the cross-partial derivatives, of the multivariate utility function. 

 The analysis becomes a bit more complicated if we consider the analysis about 
multiplicative risks, in section 7.  In that section, note that we were not able to equate higher-
order risk attitudes based on lottery preference with only signs of the derivatives of the original 
utility function.  In particular, the signs of the cross derivatives of the bivariate utility function 
depended on more than just the signs of derivatives of the univariate utility function.  For 
example, we showed that 12 ( , ) 0y h <U  requires that relative risk aversion of the utility function u 
exceeds unity.  In a similar vein, 112 122( , ) ( , ) 0y h y h= >U U  requires relative prudence exceeding 

two.  Thus, our lottery preference depends not only on the individual’s being risk averse or being 
prudent, but also on the degree of risk aversion or magnitude of prudence. 

 The value of measuring intensities of risk aversion was introduced by Pratt (1964) and 
Arrow (1965).  The analysis was extended to intensity measures of prudence by Kimball 
(1990).20

 However, the literature on higher-order risk has shown that other intensity measures can 
be important for comparative statics in decision problems.

  Essentially, these measures were used to aid in determining the qualitative changes of 
decisions made within specific choice problems.  For example, when will some small change in 
the initial conditions lead to the purchase of more insurance?   

21

 Given the analysis presented in this paper, empirical-relevance issues remain.  Are 
individuals prudent?  Are they temperate?  Obviously, behavioral issues complicate the situation.  
For example, most all of the experimental evidence shows that risk aversion does not occur 
universally, although risk aversion is generally accepted as a relevant trait for models of decision 

  How these alternative measures 
relate to lottery preference is an interesting area of current research, for which we do not yet 
know very many answers.   

                                                 
20  Caballé and Pomansky (1996) further extended these measures to arbitrarily high orders.  
21  A short summary of these existing measures is provided by Eeckhoudt (2012).  
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making.  The extant empirical evidence seems to show that individuals behave in a mostly 
prudent manner.  Likewise, most of the evidence leans towards temperate behavior.22

 Over the years we have progressively learned much about risk aversion, and that 
knowledge has permeated models of decision making under risk, such as models of insurance 
choice.  As we continue to learn more and more about higher-order risk attitudes, such 
knowledge will become more important as it integrates into insurance economics and other areas 
of risky decision making.  We are quite curious ourselves to see where this all takes us over the 
next decade or two.   

   

 

  

                                                 
22  See Tarazona-Gomez (2004), Deck and Schlesinger (2010), Ebert and Wiesen (2011), Ebert and Wiesen (2012), 
Maier and Rüger (2011) and Noussair et al (2011).   
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